Lefschetz theorem for holomorphic one-forms on weakly 1-complete manifolds
نویسندگان
چکیده
For a holomorphic one-form $${\xi }$$ on weakly 1-complete manifold X with certain properties, we will discuss the connectivity of pair $$(\hat{X},F^{-1}(z))$$ , where $$\pi :\hat{X} \rightarrow X$$ is covering map and F function $$\hat{X}$$ such that $$dF=\pi ^*{\xi . We also criteria about when admits proper mapping onto Riemann surface.
منابع مشابه
Odd Coefficients of Weakly Holomorphic Modular Forms
s 1. Fisseha Abebe, Clark Atlanta University Distance Metric for Protein Partitions The composition of proteins in terms of amino-acid sequences within three protein theoretical families: serine, leucine, and valine, with respective sizes of 8, 7, and 5 amino acids, have been studied using combinatorial methods. All possible partitions are examined, and a metric is defined to measure the distan...
متن کاملThe Bochner-Hartogs dichotomy for weakly 1-complete Kähler manifolds
© Annales de l’institut Fourier, 1997, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...
متن کاملOdd Coefficients of Weakly Holomorphic Modular Forms
is a weakly holomorphic modular form of integral or half-integral weight w2 on the congruence subgroup Γ1(N). By a weakly holomorphic modular form we mean a function f(z) which is holomorphic on the upper half-plane, meromorphic at the cusps, and which transforms in the usual way under the action of Γ1(N) on the upper half-plane (see, for example, [13] for generalities on modular forms of half-...
متن کاملOn Cycle Integrals of Weakly Holomorphic Modular Forms
In this paper, we investigate cycle integrals of weakly holomorphic modular forms. We show that these integrals coincide with the cycle integrals of classical cusp forms. We use these results to define a Shintani lift from integral weight weakly holomorphic modular forms to half-integral weight holomorphic modular forms.
متن کاملHecke Operators for Weakly Holomorphic Modular Forms and Supersingular Congruences
We consider the action of Hecke operators on weakly holomorphic modular forms and a Hecke-equivariant duality between the spaces of holomorphic and weakly holomorphic cusp forms. As an application, we obtain congruences modulo supersingular primes, which connect Hecke eigenvalues and certain singular moduli.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2021
ISSN: ['1432-1807', '0025-5831']
DOI: https://doi.org/10.1007/s00208-020-02141-y